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and Engineering Research Council, Dareshury Laboratory, Daresbury, Warrington WA4 
4AD, UKT 
$Department of Physics, State University of New York at Stony Brook, Stony Brook, 
New York 11794, USA 

Received 2 February 1983 

Abstract. Some simple closed-form approximations are derived for the oscillatory part 
of the Wigner function F for a system of degenerate fermions completely filling the first 
M shells of an oscillator potential in N dimensions. The formalism for a general dimension- 
ality is retained since various properties of the physical case ( N  = 3)  may be related to 
similar systems in  one dimension higher or lower. In particular the magnitude of the 
oscillations increases with N, but it is shown that if the last shell is only half filled the 
structure is decreased to that obtained for a closed-shell system in one dimension lower. 
The structure is shown to decrease slowly in the ‘classical’ or ‘macroscopic’ limit of large 
particle number, when the density is shown to tend to its Thomas-Fermi value. The 
formula for the full-shell case is sufficiently simple to generalise to the problem of almost 
degenerate fermions at a finite temperature T, where it is seen that substantial damping 
of the oscillations may be obtained for any particle number. An explicit expression for 
the damping is derived and this implies that for deep-inelastic nuclear reactions at a 
temperature of around 2 to 3 MeV, considerable structure may still be present in F. A 
simple expression relating the Fermi energy and the particle number of the system at 
finite temperature is given. 

1. Introduction 

The Wigner function (Wigner 1932) for an N-dimensional system of fermions is 
defined as 

where s = (sl, s 2 ,  . . . , sN j and p is the single-particle density matrix. In a mean-field 
approximation, p may be written as 
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3220 N Rowley  and M Prakash 

where ni  are the occupation numbers of the single-particle states c$~ ( r )  generated by 
the average potential V ( r ) .  (We shall, of course, be principally concerned with three 
dimensions but shall retain a general N since various relations exist between the 
Wigner functions for different dimensionalities.) 

The interest in this function lies in the fact that F is strongly analogous to a classical 
phase-space probability distribution in that expectation values of operators depending 
on p and q may be written as integrals of F with an appropriate weight function e.g. 
the density of the system may be simply written 

(1.3) 

Unlike its classical counterpart, however, the Wigner function, which is real, may 
display strong quantal oscillations (to the extent that it may even become negative) 
and thus F loses some of its intuitive appeal as a probability distribution. It is 
interesting, therefore, to examine the conditions under which these quantal oscillations 
may be ignored and a smooth approximation to the function taken. The oscillations 
in F also clearly lead to structure in quantities such as the density (1.3) and if we find 
conditions under which F is smooth, then we may also take similarly smooth approxi- 
mations to many other functions e.g. the Thomas-Fermi approximation for p (4) 
(Durand et a1 1978). Such smooth approximations to the Wigner function can also 
be used as input for dynamical calculations which involve solving the Vlasov equation 
with collision integrals (Schuck and Winter 1982). Extensive studies of both static 
and dynamic properties of nuclei using exact and approximate Wigner functions have 
been made (Bertsch 1975, 1978, Ring and Schuck 1980, Kolomietz and Tang 1981, 
Brink and di Toro 1981). 

In order to obtain some insight into this problem it is instructive to consider the 
case where V is a harmonic oscillator potential giving the Hamiltonian 

where the sum on j runs over all A particles in the system. In this case i f  we consider 
a degenerate system of fermions completely filling a certain number of oscillator shells, 
then F(q,  p )  depends only on the 'energy' 

E = ( p 2 / 2 m ) + t m o 2 q 2  (1.5) 

and for the N-dimensional case we may write F in terms of the associated Laguerre 
functions ,LE-' (Magnus et a1 1966) as (Shlomo and Prakash 1981) 

where = E/hw is the energy in units of the oscillator level spacing and f ; ( ~ )  is the 
Wigner function of the Kth shell. The last full shell is the Mth and the system contains, 
therefore, a total number of particles 

M 

K = o  K = O  

where g g  is the degeneracy of the Kth shell in  N dimensions. The above values of 
A and of F E  correspond to one particle in each oscillator state and both should be 
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multiplied by the appropriate spin (s) and isospin ( t )  degeneracies (i.e. by (2s + 1) and 
(2t + 1)) appropriate to the physical system in question. 

The above problem of the oscillatory structure in F E  ( E )  has to some extent been 
studied numerically by Prakash et a1 (1981) and our aim in the present paper is to 
derive some simple closed-form approximations to these oscillations which will permit 
a general discussion of the conditions under which they may be neglected. Since the 
above expression (1.6) corresponds to the last full oscillator shell having energy 
E~ = ( M  +:N)hw and the first empty shell having energy = ( M  + 1 + : N ) h w  we 
take the Fermi energy of the system to be half-way between these levels i.e. 

(1.8) E F  = [M + t ( N  + l ) ] h w  = yhw.  

It will then often be convenient to work in terms of as our energy unit (this is 
rather natural if one is interested in the ‘macroscopic’ properties of the system) and 
we define 

= & / & F =  6 / y  (1.9) 

as our new variable in this case. (Note that this gives a/ae = ~ ; ‘ a / a z . )  In  terms of 
this quantity equation (1.6) then becomes 

(1.10) 

We shall see later that in the limit of large y = M + t ( N  + 1) (i.e. a ‘macroscopic’ 
number of particles) we find the result 

for any fixed E in the range 0 < E  < E ~  (i.e. for 0 < z < 1). Anticipating this result we 
work, henceforth, in terms of a dimensionless ‘normalised’ Wigner function defined 
by ~ L ( E )  = ( 2 ~ h )  F , ( E )  and write equation (1.10) in the form N N  

with 

T: (E)  = ( - - 1 ) ~ 2 ~  exp(-2yz)~g-’(4yz) .  

This will facilitate the comparison of our results for different dimensionalities. 
also that for large M equation (1.7) becomes 

1.12) 

1.13) 

Note 

A(N,M)- ( l /N! )yN.  (1.14) 

The above equation (1.13) now contains no reference to the level spacing hw and 
the limit y + c\3 may be taken for any value of this quantity. However, if we take this 
limit at a fixed Fermi energy E F =  y h w  (physically of course we do not want ~ ~ ’ 0 3 )  

then this corresponds to taking y + 00 with hw + 0 and may then be thought of as a 
sort of semiclassical limit (Berry 1977) though it is very different from the case hw + 0 
at fixed particle number. (We shall see though that our approximations are good, 
even for relatively small particle numbers.) 

Note that the case of increasing particle number and decreasing oscillator frequency 
at fixed Fermi energy is similar to the nuclear structure problem for which h w =  
41A-”3 MeV. Since in three dimensions equation (1.14) gives A - jy  (accounting 2 3  
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for a factor 4 from spin and isospin degeneracy) the above relation is equivalent to 
ho = 47/y MeV as in equation (1.8). 

In addition to the case of filled oscillator shells the formulae we shall derive will 
also allow us to study in a simple manner the half-full shell and the problem of a 
system of almost degenerate fermions at some finite temperature T, for which the 
structure in F may be appreciably damped (Prakash et a1 1981, Heller 1976). 

2. Integral expressions for Fz 
It may be shown (Shlomo and Prakash 1981) that the Wigner function defined in 
equation (1.6) may be related to the Wigner function of a single shell in  a system of 
higher dimensionality by the expression 

m 

F:(E)  = fpl ( E ’ )  de’. (2.1) 

In terms of the quantities and y this may be written 

and we may now consider if this is suitable for obtaining analytic approximations. 
The great advantage of this integral is that i t  contains a single value of the oscillator 
shell number unlike the sum in equation (1.6) which contains all shells K = 0 to M. 
For large M we may, therefore, replace FE1 by some asymptotic approximation 
and Balazs and Zipfel (1973) have used an Airy function in the above formula. In 
terms of the Airy function (Abramowitz and Stegun 1965) we may write for large y 

with xo = ( 2 y ) 2 ’ 3 ( ~ / ~ ~ -  1). This approximation is, however, unsatisfactory since the 
Airy function expression is valid only in the region 11 - E / E F /  s ( 2 ~ ) ~ ~ ’ ~  whereas the 
integral contains values of the argument outside this range and fails to reproduce 
correctly the oscillatory structure in p. However, the expression may be used (Balazs 
and Zipfel 1973, 1974) to derive the asymptotic value of F at E = 

since at the positive values of E - E F  for which the Airy function is not a good 
approximation, the exact ~F’(E)  is small. 

We may also differentiate equation (2.2) to obtain 

aFE(&)/d& = - ( Y / & F ) f r ’ ( & )  (2.6) 
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and for E = E ~  we may use the Airy function expression (2.3) to obtain a good 
approximation to this derivative. In particular 

@ ; ( E ) / &  I E F  = - ( ( ~ Y ) ” ~ / E F )  Ai(0) = - 0 . 3 5 5 ( ( 2 ~ ) ’ / ’ / ~ ~ )  (2.7) 

which is exact in the limit of large y, when F falls rapidly to zero for E > E ~ .  

We see, therefore, that the problem of finding an approximation to fpl ( E )  for 
all E > O  makes equation (2.2) unsuitable for our purposes. We shall now derive an 
alternative integral formula which is more amenable to approximations and which 
has the further advantage of naturally separating into its ‘classical‘ value plus a term 
which produces oscillations about this. 

By introducing a convergence factor exp(-aK) we may write the sum in equation 
(1.12) in the form 

where ? : ( E )  is given by (1.13). Using the generating function (Magnus et a1 1966) 

with y = -e-a we then find 

(2.9) 

(2.10) 

which is the ‘classical’ value of mentioned in 9: 1. Therefore, we have 

PE(&) = 1 +PE(&,, (2.1 1) 

where we shall find that 

(2.12) 

is responsible for the oscillatory structure in F (quantal oscillations) for E < E F  and 
vanishes for large y as y-” ’ .  Of course for E > E F  the full Wigner function decreases 
rapidly to zero and we must, therefore, have P =  -1 in this region. 

We may now write this sum as an integral in the complex K-plane 

(2.13) 

where the contour C encloses the positive real axis from a point between M and 
M + 1 and +a. The convergence factor now merely ensures that we have no contribu- 
tion from large Re K and since the function LE-’ has no singularities for Re K > 0 
we may simply take C to be a line parallel to the imaginary K-axis. Crossing the real 
axis at K =M + t we then obtain 

(2.14) 

This expression now provides a means of employing a large-M approximation valid 
for fixed E and has the further advantage that the limits of integration are not variable 
as in (2.1). 
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3. Properties of F Z  ( E  

We show in  appendix 1 that an asymptotic expression suitable for our purposes is 
given by 

f:(E) = ( - 1 ) K 2 N  e- ' " '~ ; -~(4a ,~)  = (2/rCY)1/2[5(N-1'2)'2 ]-'(l C O S W ,  (3.1) 

where 

CY = a ( K , N ) = K + : N ,  ,L = ;/a = yz/CY, (3.2a, 6 )  

w =2a{sin-'(1 -6)1/2-[[(~ -6 ) ] ' /2 } - i r .  ( 3 . 2 ~ )  

This expression is the first term in an asymptotic expansion off for large a and fixed 
,$ in the region 0 < 6 < 1, For a given value of a ,  however, it is a good approximation 
to T i ( & )  for ,$ >>a-2 and (1 - ,L)a(2a)-2/3.  Our approximation and the exact 
are compared in figure 1 for N = 3, K = 5. 

It is interesting at this point to reflect on the importance of the quantity y = eF/Aw 
introduced in 5 1. We have seen (equation (2.6)) that the derivative a F & ( E ) / &  is 
exactly proportional to F M  ( E )  and we now see that for the latter combination of 
shell number and dimensionality we have from equation ( 3 . 2 ~ )  

-N+1 

a ( M ,  N + 1) = M  + f ( N  + 1) = y = &F/hw (3.3a) 

and thus from (3.26) 

6 = ; / y  = z = & / & F  (3.36) 

and from ( 3 . 2 ~ )  

w =2y{sin-'(l - z ) " ~ - [ z ( I  -~)]~'~}- ir .  (3.3c) 

Therefore, all the maxima and minima in the full Wigner function F c  occur (within 
our approximation) at values of z = &/eF for which 

(3.4) 

with n = 0, 1, 2, . . . . In particular the last maximum (see figure 2) occurs for z = 1 in 
which region we may write 

(3.5) 
Thus for z = 1 the positions of the oscillations depend on the same combination 
(2y)2/3( l  - 2 )  as the Airy function and give the last maximum at 

1 / 2  - ~ y { s i n - ' ( ~  - z)1 /2  - [ z  (1 - z ) ]  - ( n  + 37, 

=+[(2y)2/3(1 - z ) 3  3 / 2 -  z 7 .  1 

2 / 3  

Zmax = - = 
E F  

compared with 1 - 2 . 3 3 / ( 2 ~ ) ~ ' ~  for the Airy function (Balazs and Zipfel 1973, 1974). 
Note, however, that for smaller values of z our approximation (unlike the ,Airy 
function) no longer depends simply on the above parameters and reproduces the 
oscillatory structure in F rather well (see figure 2). 

In addition to fF' giving the combination a (M,  N + 1) = M  + i ( N  + 1) = y we 
see from equation (2.14) that in order to evaluate p$ we must expand the Laguerre 
function about the point K = M + $ and thus we again obtain CY ( M  + i, N )  = M + 
$(N  + 1) = y. The evaluation of the resulting integral is performed in appendix 2 and 
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10 1 

Figure 1. The exact ‘normalised’ Wigner function 
~ F ( E )  for a single full shell ( K  = 5  in three 
dimensions) is shown by the full curve. The broken 
curve shows the approximation of (3.1) to this quan- 
tity which is plotted as a function of 6 = 

E/(K +$N)hw. 

1 

0 05 1 0  
fk: 

Figure 2. ( a )  The exact (full curve) and approximate 
(broken curve) normalised Wigner functions F z  ( E )  

are shown for M = 5, N = 3 as a function of E / E F  

(equations (1.12) and (3.7)). Also indicated is the 
position at which the last maximum occurs (as calcu- 
lated from equation (3.6)) and the point below which 
the oscillating contribution may exceed unity (as 
calculated by (3.11)). The height of the first 
maximum which is cut off in  this figure is about 6.7. 
(6)  As ( a )  but for M = 6 ,  N = 1 .  Note that both 
( a )  and ( b )  correspond to y = M + i ( N + 1 ) = 7  and 
thus the structure occurs in both cases at almost 
exactly the same points. However since (6) is two 
dimensions lower than ( a )  the magnitude of the 
structure is reduced by approximately a factor of 
E/€,=. ( c j  As ( a )  and (6) but for M = 5 ,  N = 2 .  This 
figure corresponds, therefore, to only half filling the 
5th shell in three dimensions (see equation (4.4)) 
and the structure seen in figure l ( a )  is reduced here 
by about a factor of ( E / E ~ ) ” * .  

leads to our central result 

FL(&) = 1 +[cos (6/(27ry)1/2z(N-1’2”2 (1 - 2 ) 3 / 4 ]  (3.7) 

(where now y = M + : ( N  + 1) and z = E / E ~ )  with 

4 = 4 ( y ,  z )  = 2y{sin-’(l- z ) ” ~  - [ z  (1 --z)]”~) --ax. (3.8) 

This is valid asymptotically for fixed z in the region 0 < z < 1 as y + CO. However, for 
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a given y i t  is a good approximation for z >> y -2  and (1 - z )  ( 2 ~ ) - ~ ’ ~ .  Since we are 
principally concerned with the oscillations in F the fact that our formulae are not 
valid for E 3 

We saw above that for z = 1 the positions of the oscillations in P depended only 
on ( 2 ~ ) * ’ ~ ( l - z )  and we now see that this is also true of their magnitude since we 
may write for z = 1 

is no real problem. 

(3.9) 

though again this ceases to be true for smaller z for which our full approximation is 
more correct. 

In particular there is a dependence on the dimensionality N through the term 
which gives stronger oscillations for systems of higher dimensionalities. -i N -1 /2) /2  

We find though the height of the last maximum as 

which is actually independent of N and y in the limit y +CO. The above dependence 
means, however, that in higher dimensionalities the oscillations in the Wigner function 
may become of order unity at larger values of E / E ~  (and thus F may become negative 
over a greater region for larger N ) .  Equation (3.7) shows that for dimensionality N 
this may occur for 

which is valid only for N > 1 since for N = 1 this formula predicts a value of z o  in a 
region where our approximation is not valid. 

Some of the above points are demonstrated in figure 2 .  In figures 2 ( a )  and 2(6) 
weshowFEforM = 5,N = 3 andM = 6,N = 1. Bothof thesecombinationscorrespond 
to y = 7 and we see that even for this relatively small value of y our expression (3.7) 
(broken curve) is already a rather good approximation to the exact FE of equation 
(1.6) (full curve). Although both these Wigner functions have y = 7 they correspond 
to very different particle numbers A = 56 and 6 respectively. 

As predicted by equations (3.7) and (3.8) we see that the positions of the oscillations 
depend only on y but that their magnitude also depends explicitly on N .  The position 
of the last maximum as predicted by equation (3.6) is shown in these figures and for 
N = 3 we also show the point below which the magnitude of the oscillating term will 
exceed unity and may render the Wigner function negative. These values are seen 
to be in good agreement with the numerical calculations. 

As M and hence y increase, the quality of our approximation improves and we 
see, therefore, that in the ‘classical’ limit the oscillations in the Wigner function vanish 
as y - ’ l 2  for any fixed value of However, since the frequency of the oscillations 
increases with y we see that the structure in quantities such as the density 

(3.12) 
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decreases rather faster than this. For a three-dimensional system we have 

or using equation (1.5) 

(3.13) 

(3.14) 

where V ( q )  = imw2q2.  Applying the above results we may approximately write, for 
V ( q )  < E F  (since for large y, F + 0 rapidly for E > EF) ,  

where 

(3.16) 

is the Thomas-Fermi approximation to the density and 6 is an oscillating term involving 
the oscillatory part of the Wigner function. The function E decreases as y-1/2 except 
near to e F ,  where the maximum period of the oscillations decreases as y - 2 / 3  (see 
equation (3.5)) and we may write, therefore, 

P(q) PTF(q) +O(y -2 ’3 ) .  (3.17) 

Note that in the limit w + O  at constant Fermi energy, PTF tends to the Fermi gas 
value 2k;/3r2 for finite q. Also the ‘radius’ R of the system (defined as the point at 
which p T F ( R )  = 0) is given by 

(3.18) 

and so in three dimensions with a fixed Fermi energy (as in the nuclear physics case) 
we have 

R =RoA’l3.  (3.19) 

All the above discussions have been based on a system of degenerate fermions 
completely filling the first M shells of an oscillator potential. We shall now relax this 
constraint to consider firstly the case of the half-full shell and secondly a system of 
almost degenerate fermions at a finite temperature T such that kT<< 

2 1 / 2 =  R = ( ~ E F / ~ W  ) 2 r / k ~  

4. The half-full shell 

Our definition of the half-full shell is that the occupation numbers for all states of 
the (degenerate) Mth oscillator shell are t and all lower shells are full. This essentially 
corresponds, therefore, to a thermal distribution with k T  << ho and = ( M  + t N ) h w  
since the spacing of the levels in a given shell is zero. In this case we denote our 



3228 N Rowley and M Prakash 

Wigner function by i%(l,2) ( E )  and write 

(4.1) 

In other words the Wigner function, if the last shell is only half full, is just the 
arithmetic mean for the two adjacent closed shells. Balazs and Zipfel(l973) use such 
an arithmetic mean to damp out the oscillations in the case of N = 1. Using equation 
(2.1) we may write . r C C  

and since (Magnus et a1 1966) 

L;-l(x)-L:?l(x) = L Z - 2 ( x )  

we then obtain using equation (1.13) 

(4.3) 

Therefore, the Wigner function for a system with the last shell half full is just 
proportional to the Wigner function for the same shell closed but in one dimension 
lower. In figure 2(c) we show Fz ( E )  and we see from the above results that this is also 
equal to F:(1/2) ( E ) .  Thus the oscillations seen in figure 2(a)  with the 5th shell filled 
are reduced to those seen in figure 2(c) if the 5th is only half filled. Note, that FL-' 
( E )  corresponds to a Fermi energy = ( M  + $ N ) h w  but that this is exactly what we 
require in N dimensions if we only wish the Mth shell to be half full (see also 8 5 ) .  
Note also from equation (3.7) that the above 'reduction of dimensionality' essentially 
damps the oscillations by a factor z '". 

Since the half-full shell behaves somewhat more 'ciassically' than the full shell 
then the smooth approximations taken to nuclear Wigner functions in the study of 
deep-inelastic reactions may be more appropriate for nuclei between closed shells 
(though the degree of damping is not very great). We shall now show, however, that 
the introduction of a finite temperature can produce substantially more damping than 
that given by choosing our last shell to be half full. 

5. Temperature smoothing of 

At a finite temperature T and for a Fermi energy 
normalised Wigner function as 

= (A + i N ) h w  we may write the 

where 

n~ = (1 +exp[(K - A ) / p ] } - '  ( 5 . 2 )  
with 

p = kT/hw = (kT/&F)(A + $ N ) .  (5.3) 
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By introducing the convergence factor e-aK again we may write equation (5.1) in the 
form 

(5.4) 

which is just an exact rearrangement of the sum (5.1) and E;(&) is defined in (2.12). 
Note that for the full-shell case we have nK - nK+l = &+W. If our fermions are almost 
degenerate we have p << A (i.e. kT << E ~ )  and thus no= 1 and also the coefficients 
(nK  - n K + l )  in equation (5.4) are non-zero only for values of K such that 

( 5 . 5 )  

Thus we see that the period of the oscillations in the finite temperature problem must 
be characteristic of the shell number corresponding to the Fermi energy. In appendix 
3 we use equation (5.4) to derive a simple approximation to the temperature-smoothed 
Wigner function. We find that for p >> 1/27r2 (cf Bohr and Mottelson 1975) and for 
E not too near E F  

FN (A ,  P,  E = 1 + {D (PI z ) / i 2 v )  z 

I K  - A I  - p  << A .  

(1 -z )3 /4}  

x [cos q5 -COS(#J - 27rA 1 exp(-47rpz 1 /2 ) ]  

1 /2  (N-1/2) /2  

(5 .6)  

where #J and z are defined as in (3.8) but now with y = &F/hO = A  + i N  and the 
'damping function' D is given by 

D(p, z )  = 27rp(l - ~ ) " ~ / s i n h [ 2 n p  sin-'(l - z ) ~ / ~ ]  (5.7) 

and is independent of both A and N .  We see from (5.6) that for z > > ( 4 ~ p ) - ~  the 
second term in square brackets may be neglected and we have simply 

( 5 . 8 )  

i.e. the oscillations are given by the closed shell expression (3.7) (but note that A is 
now a continuous variable) modified simply by the function D. We have seen, however, 
that for T = 0 the oscillations in the Wigner function depend quite sensitively on the 
choice of A ; in particular if we choose A to be an integer then we obtain a half-full 
shell. In  this case F suffers a 'reduction of dimensionality' and the oscillations are 
essentially damped by a factor z 1'2. The remnants of this effect at finite temperature 
can be seen from the term in square brackets in equation (5.6). If A is an integer 
then this becomes 47rP.z 'I2 cos q5 for small 2, whereas for half-integral values of A we 
obtain 2 cos q5, 

It is clear from equation (5.7) that we obtain little change in the Wigner function 
in the region of the Fermi energy (D(& z ) +  1 for z + 1) whereas at small energies 
the damping may be large D@, 0) = 47rp exp(-7r2p). For p = 0.3 this gives D(p, 0) - 
20% and for p = 0.6 we have D(p,  0) = 2%. 

In figures 3(a)  and ( b )  we show by the full curves the exact temperature-smoothed 
Wigner function (5.1) for A = 5 . 5  with (a) p =0.3 and (b) p = 0.6 for a three- 
dimensional system. The broken curves in these figures show the approximation (5.6) 
to these functions. The full curve in figure 4 shows the same quantity for A =20.5 
and P = 0.6 and the broken curves show the envelopes of the oscillations for p = 0.3 
and /3 = 0. 

FN(A, p, E )  = 1 +E?(e )D(p ,  z ) ,  
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0 0 5  1 .o 
E/EF 

Figure 3. (a )  The normalised Wigner function F N ( A ,  p, E )  is shown for N = 3, A = 5.5 and 
0 = k T / h o  = 0.3 as a function of E / E ~  with E ~ =  (A  + f N ) h w .  The broken curve shows the 
approximation of (5.6). Although the structure is considerably reduced from that seen in 
figure l ( a )  (corresponding to p = 0) it is by no means negligible. ( b )  As ( a )  but for a 
higher temperature p = 0.6. In a nuclear problem these figures would roughly correspond 
to A = 224 ( N  = 2 = 112) and to temperatures of about 2.5 and 5 MeV respectively. 

Figure 4. As figure 3 but with A = 20.5 and p = 0.6. The broken curves show the envelopes 
of the oscillations for = 0.3 and the largest case of p = 0. 

In dynamical nuclear calculations it is common to use a smoothed Wigner function 
as input (see the references cited in 3 1) on the grounds that the temperature induced 
by the reaction will damp out much of the structure in F. In this respect the quantities 
in figure 3 are relevant since they correspond to a particle number of 224 (including 
a factor 4 for spin and isospin degeneracy) and thus correspond to what one might 
expect for a heavy nucleus. In this mass region we have hw -- 8 MeV and thus at a 
nuclear temperature kT = 2.5 MeV (p = 0.3) the Wigner function still possesses a 
considerable degree of structure and one should be careful to check that this does 
not seriously affect the conclusions of any calculations made using a smooth approxima- 
tion. Of course in this mass region the oscillator potential is not really appropriate 
though one might expect a similar amount of structure from other potentials. 
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We have seen in 9: 3 that for any fixed value of & / & F <  1 the structure in F vanishes 
as Y _ - * / ~  as y + 00. We have also seen, however, that the height of the last maximum 
in F is about 1.30 (the difference being that this maximum is not at a fixed value of 
z but occurs at the point where (1 - ~ / & ~ ) ( 2 y ) ~ ’ ~  = 2.32) and it is interesting, therefore, 
to speculate on the temperature f at which even the oscillations in this region are 
damped. Near the last maximum we have 1 - z  - y-2’3 and thus D simply becomes 

D = 2x e-‘ (5.9) 

with x - ’LT&,-”~. To obtain significant damping we clearly require x >> 1 and thus 
p’ >> ~ ” ~ 1 2 ~ .  Thus p’ is an increasing function of y. However, we have p’= kf/ /hw 
whereas the quantity which determines whether our fermions are degenerate or not 
is k f / E F  = P l y .  We thus find that for large particle numbers the value of the tem- 
perature at which the Wigner function has no quantal oscillations is given by 

(5.10) k F  = &FB//Y >> . ? ~ / 2 i ? Y ~ / ~  

which vanishes as for a three-dimensional system. 

6. Particle number and Fermi energy at finite temperature 

At a finite temperature we must, of course, choose the Fermi energy (or in our notation 
A )  to reproduce the correct particle number A for the system. Writing A as a function 
of P and A we have 

Since we shall only consider the three-dimensional system in this section we have 

g K  =(K+:-l) =4(K+l ) (K+22)  

in the above equation. For a reason which will become apparent later we now formally 
include the term K = -1 in the above sum (note that g-l = 0) to obtain 

This sum may now be written (exactly) using the Poisson summation formula (Lighthill 
1958) as 

X X 

A(P, A )  = n ~ - 3 p ( P ,  A)g~-3 /2  e x p ( 2 ~ m i K )  dK 
m = ..m 

The terms m # 0 may now be evaluated by contour integration. For m > 0 we integrate 
upwards parallel to the imaginary axis and then close the contour around the first 
quadrant picking up half the poles of nK (p, A )  which occur at K = A  + (2n  + 1)niP. 
Similarly for m < O  we close around the fourth quadrant. The advantage of having 

the background integrals (sections parallel to the imaginary axis) now cancel pairwise 
K = -1  as the lower limit in equation (6.4) is that it may be readily shown that all 
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for the terms in m and -m, and this was the reason for including K = -1 in equation 
(6.3). The sum of all the pole terms obtained in this way is discontinuous for integral 
A in  the limit p + 0 and this simply corresponds to the abrupt addition of a further 
shell as A increases at zero temperature. However, for finite p the sum is well defined 
for all A and generates a term of order exp(-27r2P). We are, therefore, left with 
the expression 

m 

A(@, A )  = nKgK dK + o(exp(-27r2p)) I_,/* 
which on integrating by parts yields 

A(@, A ) = [ b n ~  ( K 3  5 HK2 + 6K)]Y3/2 

= ;(A +;)(A +:)(A +$) + & r 2 p 2  +$)(A +:) + o(exp(-2,r2p)) (6.5) 

which is valid for any temperature satisfying O<p << A .  Note that the number of 
particles contained in a system where all shells up to the Mth are full is just ;(A4 + 1) x 
( M  + 2)(M + 3)  and this is reproduced exactly by the first term in equation (6.5) if 
we choose A = M + f i.e. if we take the Fermi energy exactly between two levels. The 
second term, therefore, gives the correction to the particle number due to the finite 
temperature. For example in our case A = 5.5, p = 0.6 (see figure 3) we have a 
contribution of 4.43 to the particle number due to the second term in equation (6.5). 
This is in addition to the 56 particles in the system in the case of a closed shell. 

In order to obtain our original 56 particles once more we must change A by an 
amount 

SA --2(r2p2+$)(A +:)/(aA/dA) (6.6) 

where dA/aA = gA. Inserting the above values into this equation we find 6A - -0.16 
giving A = 5.34. 

The largest of the pole terms in equation (6.5) comes from the Poisson terms 
m = f 1 and yields explicitly an oscillatory correction to A 

~ , , , = 4 r g , ~  s in(2rh)  exp(-27r2p) (6.7) 

from which we see that the particle number still increases most rapidly when A is 
integral (though of course this effect is entirely negligible for 2 r 2 p  >> 1). An analysis 
similar to that given above may be performed for the total energy of the system at 
finite temperature. We now find an oscillatory contribution of the form 

(6.8) E,,, = 4ngA (A +$)hub sin(2,rA exp(-2,r2p). 

Bohr and Mottelson (1975) refer to such terms as shell contributions to the energy 
and they are again negligible for p >> 1/27r2. 

7. Conclusions 

We have derived some simple closed-form approximations to the N-dimensional 
oscillator Wigner function which are valid in the region where F is strongly oscillatory. 
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Unfortunately, our approximations break down for E near to and greater than in 
which region, however, F decreases monotonically. For these values of E ,  other 
approximations are more suitable e.g. the Airy function approximation (Balazs and 
Zipfel 1973, 1974). 

We have been able to isolate the importance of the quantity y = E ~ / ~ w  on both 
the magnitude and period of the oscillatory structure and were able to show that for 
(1 - E / E F ) ( ~ ~ ) ~ ’ ~  >> 1 the structure decreases, in the ‘macroscopic’ limit as even 
for totally degenerate fermions. We have also shown that the magnitude of the 
oscillatory structure increases with the dimensionality of the system and that half-filling 
the last oscillator shell essentially reduces this structure to that corresponding to a 
system in one dimension lower. 

Our formulae have also allowed us to generalise to the case of almost degenerate 
fermions ( k T c  E ~ )  and we have seen that for kT/hw ~ 0 . 3  and 0.6 the structure is 
reduced to about 20% and 2% of its value for the degenerate closed-shell problem. 
This implies, however, that for deep-inelastic nuclear reactions at a temperature of 
2 to 3 MeV a considerable degree of structure may still be present in F (see figure 3). 

In the macroscopic limit, however, smaller and smaller values of kT/EF are capable 
of completely damping even the structure in the region of the last maximum and 
under these conditions the Wigner function may approach closer and closer to its 
classical value for all values of E. 
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Appendix 1 

The function L:-’(x) may be written in the form (Abramowitz and Stegun 1965) 

( A l . l )  e-”’Lt-’(x) = ( I /*  1/2  a 3 / 4  ) ( a / x ) ” ’ ~ ( x ) ,  

where H is a solution of the differential equation 

d2H/dx2=-(a /x  -N(N-2)/4x2-:)H(x) (Al .2)  

with a = K + ; N .  A frequently quoted asymptotic expression for H (see e.g. Szego 
1939) is then given by 

H ( x  ) - x ’4 cos[2(ax - ; * ( N  - 31, (A1.3) 

which is valid for fixed x > 0 in  the limit a + W .  We wish, however, to find an asymptotic 
expression valid for fixed 5 = x/4a with a + CO. In terms of this variable equation 
( A  1.2) becomes 

- 1) H @ ) .  (A1.4) 
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For 5 >> IN(N -2)1/16a2 we then obtain the Ricatti equation 

1 
-(dg/d5)+g2=-a[cl  -5)/5] (Al .5 )  
4a 

where g = d(ln H)/d[. For fixed 0 < 5 < 1 we may then solve for g as an expansion 
in powers of a 

4ag -2ia[(1 -5)/5]1’2+[1/45(1 -5‘)]+O(a-l)  (A1.6) 

- 1  and obtain 

giving 

Taking the real part of this expression with a normalisation of ( 4 c ~ ) ” ~  and with 

and we have 
4 - L  - n ( N  - t )  clearly reproduces (A1.3) for fixed x = 4a5 as a -+ Q) since then 5 --* 0 

[4a5/(1 -S)]1/4 cos(2a{sin 1 51/2+[5(1 - 5 ) ] ” 2 } - t ~ ( N  -+)) 

- (4~x5) ’ ;~  C O S [ ~ C X [ ” ~ - ~ T ( N  -$) ] -H(x) .  

Inserting the improved approximation into equation ( A l . l )  we then obtain 

(A1.8) 

x cos(2a {sin-’ 5’” + [5( 1 -[)]I ’2} - ~ T ( N  - i)). (A1.9) 

Including the factor i-l)K in  ? ; ( E )  as -rrK in the argument of the cosine and writing 
sin-’ 5 = grr -sin-’(l this then simply leads to the expression (3.1) in the 
text for f g ( ~  1. 

1 / 2  1 

Appendix 2 

We may now use the above expression in (2.14) to obtain an approximation to F ~ ( E ) .  
Inserting equation iAl .9)  we have 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

5 = ;/a = y z / a .  (A2.5) 
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From these equations we readily obtain 

dh /dy I ,=o=- (h /y ) { [ z /4 (1 -~ ) ]+: (N-5 ) }  (A2.6) 

and 

a2g/ay2/,=, = - ( l /y)[z/( l  - 2 p 2 .  (A2.7) dg/dyI,so=2s~n z , 

For z not too close to 1 (i.e. E not too close to E ~ )  we may ignore the first derivative 
of h and the second derivative of g which are both of order y-’ and write 

. -1  112 

(A2.8) 

Inserting the values of h(0) and g(0) and including the term (- l)M as -MT in the 
argument of the cosine then yields equation (3.7) in the text. 

Appendix 3 

The sum in equation (5.4) may be exactly rewritten using the Poisson summation 
formula (Lighthill 1958) as 

m = -m Jo 

As in appendix 2 we may expand E:about K = A  and for E not too close to 
only the variation of the argument of the cosine. Thus we write 

retain 

We need, therefore, to evaluate an expression of the form 

Re 1 ( - 1 l m  exp[i(4 + 2 ~ m A ) ] j  (n~-1/2-n~+1/2)exp[i(4’+277m)(K-A)]dK 
m m 

m =-m 0 

x exp[i(q5’+2~m)(K-A)]dK 

exp[i(4 + 2 7 “  ) ]  sin id’ 
= 2 R e  1 

n, = --3c (&’+ 27rm) 

an exp[i(& ‘ + 277m ) ( K  - A )] dK. 

Using the fact that n K  = (1 +exp[(K -A)/@]}-’ this becomes 

(A3.3) 

(A3.4) 
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From equation (3.8) we see that 

4 ' =  2 sin-'(l - z ) ' / *  
and thus 0 < q5'< 7 ~ .  Therefore, for 2 r 2 P  >> 1, we only need to retain m = 0, -1 in 
equation (A3.4) giving 

). (A3.5) r p ( l - Z ) ' / *  sinh[2@ sin-'(l - z ) ' / ~ ]  
(cos q5 - cos(q5 - 2rA ) 

sinh[2rp sin-'(l - z ) " ~ ]  sinh[2rp[.rr -sin-'(l - z ) ] ' / ~ ]  

The second term in equation (A3.5) is important only near z = 0 for which we may write 

= exp(-4rp sin-' z ' I2)  = exp(-4rpz ''2). (A3.6) 

Formula (A3.5) then simply leads to equation (5.6). 
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